

GEODETIC ENGINEERS OF THE PHILIPPINES 44TH GEP ANNUAL REGIONAL CONVENTION (REGIONAL DIVISION III)

Otel Pampanga, Skye Plaza Bldg., Lazatin Boulevard, San Agustin, City of San Fernando, Pampanga March 16-17, 2018

OPERATIONALIZING THE USE OF TOTAL STATION IN HIGH-ORDERED LEVELING

LOUIE P. BALICANTA

Chair, UPDGE Director, UPTCAGP Felipe F. Cruz Professorial Chair in Geodetic Engineering

Geodesy, Survey, Land Administration and Valuation Laboratory

U.P. Department of Geodetic Engineering Ipbalicanta@up.edu.ph

THE DEPARTMENT OF GEODETIC ENGINEERING UNIVERSITY OF THE PHILIPPINES DILIMAN

OPERATIONALIZING THE USE OF TOTAL STATION IN HIGH-ORDERED LEVELING

Felipe F. Cruz Professorial Chair in Geodetic Engineering

Louie P. Balicanta

11TH Professorial Chair Colloquium

INTRODUCTION

INTRODUCTION

Direct Leveling

A(200.00)

(a) Elevation

minnin

RESEARCH MOTIVATION

Why TL with TS?

•Due to the advancement in total station technology

 least reading in angular and distance measurement has improved over the years

RESEARCH MOTIVATION

Phase 1 (Balicanta, Ines & Ramsa 2012)

- fixed experimental set-ups between points on the ground fronting Melchor Hall, UP Diliman and points at the third floor of the same building
- high ordered leveling of at least third order accuracy can be achieved
- Phase 2 this research
- Vertical control establishment
- To operationalize the use of TS for H.O.Leveling

REVIEW OF RELATED LITERATURE Error Sources: C&R effect

REVIEW OF RELATED LITERATURE Error Sources: Incidence Angle

Total Station Laser Path with Incidence Angle

REVIEW OF RELATED LITERATURE

Error Sources: Index Error

- observed if the TS is not perfectly leveled thereby affecting the vertical angle (Cruikshank, 2005)
- Double Centering Method

$$i = \frac{(VA_D + VA_R - 360^o)}{2}$$

REVIEW OF RELATED LITERATURE Error Sources: Prism Marker Offset

 $tanAE = sin\theta/((l'/a) - cos\theta)$

corrected $VA = \alpha \pm AE$

 $l = a \sin\theta / \sin AE$

 α = observed angle

Y =offset along the vertical axis

X = offset along the horizontal axis

 $\theta = 180 - (\omega + \operatorname{atan}(Y/X))$

a = offset distance

- l' = observed slope distance
- l = true slope distance

REVIEW OF RELATED LITERATURE Leap Frog Method

Fig. 3 Leap Frog Trigonometric Leveling Method Set-ups

METHODOLOGY

 $VD = l' \sin(cVA)$

 $\Delta E = Hpt_{BS} \pm VD_{BS} \pm VD_{FS} - Hpt_{FS}$

Total Station Differential Leveling

•Nikon NPR-332

- •Topcon Digital Level (for Validation)
- •Index error =22"
- •Diff. ΔElev <=12mm sqrt (K) <= 8.4mm sqrt(K) <= 4mm sqrt(K)

RESULTS

Table 1: Precision Assessment between the Two Sets of TS Leveling

	NIKON NPR-332	with corrections	Distance in km	Difference (mm)	Precision
Lines	Set 1 DE (m)	Set 2 DE (m)		Set 1 vs Set 2	
MSC to GYM	-6.231	-6.230	0.471455	-1.000	First Order
GYM to CPT	-1.131	-1.131	0.287809	0.000	First Order
MSC to ARK	1.011	1.018	0.528385	-7.000	Third Order
CPT to ARK	8.381	8.381	0.55428	0.000	First Order
CPT to MSC	7.372	7.365	0.368798	7.000	Third Order

RESULTS

Table 2: Accuracy Assessment between Adjusted Digital Level DE and Average DE TS Leveling

	Digital Level	NIKON NPR-332 with corrections		Distance in km	Difference (mm)	Precision
Lines	Adjusted DE (m)	Set 1 DE (m)	Set 2 DE (m)		Level DE vs Ave TS DE	
MSC to GYM	-6.233	-6.231	-6.230	0.471455	-2.500	First Order
GYM to CPT	-1.130	-1.131	-1.131	0.287809	1.000	First Order
MSC to ARK	1.020	1.011	1.018	0.528385	5.500	Second Order
CPT to ARK	8.383	8.381	8.381	0.55428	2.000	First Order
CPT to MSC	7.363	7.372	7.365	0.368798	-5.500	Third Order

RESULTS

Table 3: Time spent for each level line for digital leveland total station differential leveling

	Digital Level	Total Station	
Lines	time per Set (min)	time per set (min)	
MSC to GYM	30	30	
GYM to CPT	15	10	
MSC to ARK	39	45	
CPT to ARK	45	53	
CPT to MSC	24	30	

CONCLUSION & RECOMMENDATION

•A methodology to perform TS differential leveling was provided that can be used by surveying practitioners.

•Results of the experiment showed that high ordered leveling at least third order can be achieved with the use of a 1 second and 1 mm least reading TS

•Full capability of using the unit was not fully met since most of the level lines has vertical angle reading not more than 5 degrees and maximum distance less than 150 meters

CONCLUSION & RECOMMENDATION

•Time spent for both digital level and TS leveling seems to be comparable but still inconclusive

•Recommended that additional research and experiments be done using longer level lines and using points that are highly elevated or depressed to obtain vertical angles greater than 5 degrees to further test the capability of TS for high ordered leveling works

ACKNOWLEDGEMENT

•Felipe F. Cruz Professorial Chair in Geodetic Engineering, the donor of the professorial chair

•former students of GE 117: AC Bongat, Jeffrey Delica, Mia Shaira Estabillo, Marvy Funtilon, Ana Margarita Guillermo, Jillian Gulles, Mikka Lagrimas, Grace Sinadjan and Jara Kaye Villanueva for providing assistance in the conduct of the fieldworks (also Jewel Iglesia, the one in the picture)

REFERENCES

Anderson, J.M. and Mikhail, E.M. (2002). Surveying Theory and Practice 7th Edition, McGrah-Hill.

Balicanta, L.P., Ines, L.C, Ramsa, R.S. (2012). High-Ordered Differential Leveling with Total Sa tion using Modified Field Techniques and Systematic Corrections. 1st Philippine Geomatics Sym posium (p. 7). Quezon City: UP Department of Geodetic Engineering.

Ceylan, A., and Baykal, O. (2006). Precise Height Determination Using Leap-Frog Trigonometri c Leveling. Journal of Surveying Engineering, 118-123.

Cruikshank, K. (2005, March 25). Use of the Electronic Total Station-I. Introduction and basic te chniques. Retrived November 13, 2012, from Portland State University: http://geomechanics/geol/pdx.edu/Surveying/Handouts/JGE%20Paper%201%20-%20Introduction.pdf

Lee, J., and Rho, T. Application to Leveling Using Total Station, FIG, (p.10).