





Subic Bay Peninsular Hotel, Subic Bay Freeport Zone February 14-15, 2020

#### **Implementation of RTK for Property Surveys**

#### L.P. Balicanta Y.F. Pagdonsolan & C.D. Flores

#### LOUIE P. BALICANTA

Chair, UPDGE Director, UPTCAGP Felipe F. Cruz Professorial Chair in Geodetic Engineering

Survey, Land Administration and Valuation Laboratory

U.P. Department of Geodetic Engineering lpbalicanta@up.edu.ph



All civilizations that rose to an urban culture need two science-related technology:

#### mathematics for land measurements

- commerce and astronomy for time-keeping in agriculture and aspects of religious rituals
- Frederick Seitz



https://www.yumpu.com/en/document/rea d/48819103/namria-commences-interisland-benchmark-connections

## BACKGROUND



## BACKGROUND



## BACKGROUND GNSS



Satellite Positioning Hotspot http://intranet.eng.unsw.edu.au/system/files/satellitehotspot.jpg

Typical Session Lengths for Static and Rapid Static (Ghilani and Wolf 2008)

| Method of Survey | Single Frequency | Dual Frequency    |
|------------------|------------------|-------------------|
| Static           | 30 min + 3min/km | 20 min + 2min/km  |
| Rapid Static     | 20 min + 2min/km | 10 min + 1 min/km |



Typical RTK-GNSS Set-up

#### BACKGROUND LMB issued MC No. 2015-001 DENR Land Management Bureau (LMB) issued Memorandum Circular No. 2015-001, "Guidelines on the Use of Real Time Kinematic (RTK) Global

Navigation Satellite System (GNSS) in the Conduct of All Kinds of Lot Surveys with Tertiary Accuracy".



**Republic of the Philippines** Department of Environment and Natural Resources LAND MANAGEMENT BUREAU LMB Building, Plaza Cervantes, Binondo, Manila

14 JAN 2015

LMB Memorandum Circular GNo. 2015 - DTT

> SUBJECT: GUIDELINES ON THE USE OF REAL TIME KINEMATIC (RTK) GLOBAL NAVIGATION SATELLITE SYSTEM (GNSS) IN THE CONDUCT OF ALL KINDS OF LOT SURVEYS WITH TERTIARY ACCURACY

Pursuant to DAO No. 2007-29, "The Revised Regulations on Land Surveys," and in order to keep abreast with the advancement in the modern procedures and technology in surveying and mapping and to improve the delivery of public service, following guidelines for the use of RTK-GNSS is hereby prescribed for the guidance of all concerned;

## BACKGROUND



**46th ANNUAL REGIONAL CONVENTION** 

## LandS Mode 2 Research Team



University of the Philippines, Diliman



Training Center for Applied Geodesy And Photogrammetry



Engr. Louie P. Balicanta Project Leader



Mr. Allystair A. Lagman Project Assistant II

#### **CaliBER** Component



Surveying, Land Administration and Valuation Research Laboratory



Research Associate



Engr. Charlene D. Flores Research Associate



Geog. Vie Marie Paola M. River Research Associate



Engr. Severino G. Domingo Jr. Research Associate



ProperRTK Component

## **Research Coordinators**



Engr. Jesse Jungco LMB-ProperRTK Coordinator



Engr. Jewel Templonuevo LMB-CaliBER Coordinator



Department of Environment and Natural Resources

Land Management Bureau



## Results: from LandS Mode 1



Snapshot of the Cadastral Maps of Guiguinto overlaying the old PTM, Luzon 1911 and ITRF versions.

# RELATED CONCEPTS AND STUDIES Common Point



#### DAO 2007-29

Section 30. Isolated Surveys - In conducting isolated land surveys, the GE shall be guided by the following:

- a. Original, subdivision, consolidation or consolidation-subdivision isolated survey, shall be conducted using equipment and methods that will meet the tertiary control accuracy.
- b. When conducting Relocation/Verification Survey, the Allowable Position of Error shall not exceed  $\pm 10$  centimeters. However, the allowable difference in the area shall not exceed  $\pm 1$  square meters for every 1 hectare.

# RELATED CONCEPTS AND STUDIES Common Point





The problem with the use of common point is that small amount of translation in the common point will result to an equivalent shift in the positions of the subsequent surveys and the errors become cumulative when using different common points from different surveys (Fernandez, 1966)

## **RELATED CONCEPTS & STUDIES**

Comparison between GPS derived and Astronomic Azimuths

- For rapid static survey, geodetic azimuths computed from logged coordinates and published coordinates of NAMRIA reference points are comparable at least within secondary accuracy (UPTCAGP, 2009)
- For project control, geodetic azimuth and astronomic azimuth can be used interchangeably within secondary accuracy (UPTCAGP, 2009)

# RELATED CONCEPTS Azimuth

Astronomic Azimuth vs. Geodetic Azimuth vs. Grid

 $\alpha_{G} = \alpha_{grid} + \Delta \lambda^{"sin \varphi_{1}}$  (convergence correction)



http://onlinemanuals.txdot.gov/txdotmanuals/ess/images/ess\_fig3-7\_geodetic\_to\_grid\_azimuth.jpg

$$A = \alpha_{G} + (\Lambda - \lambda) \sin \varphi + (\xi \sin \alpha_{G} - \eta \cos \alpha_{G}) \cot \psi$$

where:

A = astronomic azimuth

 $\alpha_G$  = geodetic azimuth

 $\Lambda$  = astronomic longitude

 $\phi$  = geodetic latitude

 $\lambda$  = geodetic longitude

 $\varepsilon$ ,  $\eta$  = components of the deflection of the vertical

v = ellipsoidal zenith angle

A = astronomic azimuth

 $\alpha_G$  = geodetic azimuth

# **RELATED CONCEPTS**

## Distance

• Ground Distance vs. Geodetic Distance vs. Grid Distance





https://www.spar3d.com/blogs/from-scratch/vol13no16-state-plane-coordinates/

## **RELATED CONCEPTS AND STUDIES**

RTK-GNSS Performance Under Tree Canopy

 The experiment conducted by Lucas in 2007 showed that the best accuracy achieved by survey grade GPS receiver is 1.46 meters using post processed kinematic technique (Lucas, GPS under the Forest Canopy, 2007).

 Positional accuracy is degraded as the density of the canopy increases and that positional update is delayed (Zheng, Wang, & Nihan, n.d.)

## **RELATED CONCEPTS AND STUDIES**

- A Research on the Effect of Different Measuring Configurations in Network RTK Applications (Kutalmis Gumus, 2015)
  - Determines whether there is a statistically significant difference between coordinates obtained under different elevation angles and measuring epochs through different correction methods in Network Real Time Kinematic Applications.



Study Area







P3(Wooded)



P4(Urban)

P1(Open Area)

P2(Semi-Open)

46th ANNUAL REGIONAL CONVENTION

# RELATED CONCEPTS AND STUDIES LMB issued MC No. 2015-001

- Salient conditions for RTK-GNSS use for isolated surveys (a) use of calibrated and tested dual frequency GNSS receivers (b) receiver clearance of 15° from the horizon (c) bipod support of poles with receivers during survey (d) use of electronic total station to augment RTK-GNSS (e) root mean square (RMS) value must be 35 or below (f) RTK observation length not less than two (2) minutes (g) minimum of five (5) satellites must be tracked (h) baseline length of 200 meters to 1 kilometer shall be established using RTK instrument preferably not more than 1 kilometer from the lot
- (i) list of required contents of observation field notes

## **RELATED CONCEPTS AND STUDIES**

- ISO-17123-8: International Standards for Checking GNSS Field Measuring Systems (Heister, 2008)
  - standardized test for checking if declared precision of receiver is achievable in field
  - requires numerous observations of distances to be compared to actual/known values (Di,j D\*)
  - standard deviation from measurements is then compared to declared standard deviation





# **RELATED CONCEPTS AND STUDIES**



PHILIPPINE ENGINEERING JOURNAL PEJ 2015: Vol. 36, No. 2: 1-20

Applicability and Implications of the Use of Real Time Kinematic GNSS for Property Surveys in the Philippines

> Louie P. Balicanta Assistant Professor, Department of Geodetic Engineering University of the Philippines Diliman, Quezon City, Philippines 1101

- "RTK-GNSS is applicable for parcel corner position determination with consideration to limitations such as obstructions, level of accuracy, systematic error from projection, different coordinate systems used in the country, and poor identification of common points."
- Considering the limitations of the study before and the evolving GNSS receiver technology, and update of findings is necessary
- Model for Research Methodology
- GNSS models used were himited CONVENTION

## METHODOLOGY



Workflow of the Experiments

#### **RESULTS** Azimuths for RTK-GNSS



Figure 2. Site 1 used for Azimuth Test

Table 2. Mean horizontal position, minimum no. of satellites and maximum PDOP of the four simulated corners

| PT. ID  | mean<br>Horizontal<br>Precision<br>(m) | mean<br>minimum<br>no. of<br>satellites | mean<br>Maximum<br>PDOP |
|---------|----------------------------------------|-----------------------------------------|-------------------------|
| STN2    | 0.017                                  | 10                                      | 2.795                   |
| CMA1    | 0.011                                  | 10                                      | 1.815                   |
| MMA39B2 | 0.014                                  | 11                                      | 2.082                   |





Figure 3. Site 2 used for Azimuth Test



#### **RESULTS** Azimuths for RTK-GNSS

 Table 3. Maximum Difference and Standard Deviations between Rapid-Static GNSS

 positions and RTK GNSS positions

| Point ID | <b>∆</b> Nmax | <b>∆</b> Emax | σΝ             | σE             |
|----------|---------------|---------------|----------------|----------------|
| STN2     | -2.5cm        | -2.1cm        | <u>+</u> 1.3cm | <u>+</u> 1.1cm |
| CMA1     | 1.8cm         | -2.9cm        | <u>+</u> 1.4cm | <u>+</u> 0.8cm |
| MMA39B2  | -3.4cm        | -6.6cm        | <u>+</u> 3.6cm | <u>+</u> 1.8cm |

Table 4. Comparison of Grid Azimuths from Static and RTK Survey

| LINE          | Grid Azimuth         |    |       |     |    |    | Difference |         |       | PE<15 sec |
|---------------|----------------------|----|-------|-----|----|----|------------|---------|-------|-----------|
|               | From Static From RTK |    |       |     |    |    |            | Yes/ No |       |           |
|               | dd                   | mm | SS    | dd  | mm | SS | dd         | mm      | SS    |           |
| STN1-STN2     | 339                  | 14 | 30.99 | 339 | 18 | 34 | 0          | -4      | -3.01 | No        |
| STN1-CMA1     | 72                   | 20 | 33.39 | 72  | 20 | 22 | 0          | 0       | 11.39 | Yes       |
| MMA39-MMA39B2 | 89                   | 45 | 0.69  | 89  | 40 | 28 | 0          | 4       | 32.69 | No        |

 Table 5. Comparison of Grid Azimuths using Namria Position and Logged Position of MMA39

| Grid Azimuth                          |                  |                                        |                                                                               |                                                                                                                                 | Difference                                                                                                                                                                                                                   |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                 | PE<5 sec                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------|------------------|----------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NAMRIA Position of Logged Position of |                  |                                        |                                                                               |                                                                                                                                 |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                       | MMA39 MMA39      |                                        |                                                                               |                                                                                                                                 |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     | Yes/ No                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| dd                                    | mm               | SS                                     | dd                                                                            | mm                                                                                                                              | SS                                                                                                                                                                                                                           | dd                                                                                                                                                                                                                                  | mm                                                                                                                                                                                                                                                                                                              | SS                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 89                                    | 45               | 0.69                                   | 89                                                                            | 45                                                                                                                              | 0.51                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                               | 0.18                                                                                                                                                                                                                                                                                                         | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                       | NAMR<br>dd<br>89 | NAMRIA Posi<br>MMA39<br>dd mm<br>89 45 | Grid A       NAMRIA Position of MMA39       dd mm ss       89     45     0.69 | Grid Azimuth       NAMRIA Position of<br>MMA39     Logge<br>Logge       dd     mm     ss     dd       89     45     0.69     89 | Grid Azimuth           NAMRIA Position of<br>MMA39         Logged Position           MMA39         MMA39           dd         mm         ss         dd         mm           89         45         0.69         89         45 | Grid Azimuth           NAMRIA Position of<br>MMA39         Logged Position of<br>MMA39           odd         mm         ss         dd         mm         ss           89         45         0.69         89         45         0.51 | Grid Azimuth         D           NAMRIA Position of<br>MMA39         Logged Position of<br>MMA39         Logged Position of<br>MMA39         d           dd         mm         ss         dd         mm         ss         dd           89         45         0.69         89         45         0.61         0 | Grid Azimuth         Difference           NAMRIA Position of<br>MMA39         Logged Position of<br>MMA39         Colspan="5">Mage Position of<br>MMA39           dd         mm         ss         dd         mm           89         45         0.69         89         45         0.51         0         0 | Grid Azimuth         Difference           NAMRIA Position 6<br>MMA39         Logge Position 6<br>MMA39         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         < |

Table 6. Comparison of Geodetic Azimuth and Astronomic Azimuth

| LINE          | Geodetic Azimuth   |                                |            |               |                          | D          | ifferen | ce | PE<10 sec |         |
|---------------|--------------------|--------------------------------|------------|---------------|--------------------------|------------|---------|----|-----------|---------|
|               | (Grid<br>cor<br>co | l Azimu<br>nverger<br>orrectio | nce<br>nce | Astro<br>muth | onomic<br>(UPTC<br>2009) | Azi<br>AGP |         |    |           | Yes/ No |
|               | dd                 | mm                             | <b>S</b> 5 | dd            | mm                       | 55         | dd      | mm | 55        |         |
| MMA39-MMA39B2 | 89                 | 45                             | 53.84      | 89            | 45                       | 45         | 0       | 0  | 8.84      | Yes     |

## RESULTS Under Tree Canopy



Figure 4. Site 3 for RTK-GNSS under Tree Canopy Experimen

| Table 7. List of points ob | erved to be | e fixed and | not fixed. |
|----------------------------|-------------|-------------|------------|
|----------------------------|-------------|-------------|------------|

| Tree no. | GPS+GLONA<br>10/22/2013, 1 | SS Receiver (Date:<br>lime: 16:03-17:44) | GPS+GLONA<br>(Date: 10/22/ | SS+BDS Receiver<br>2013, Time: 11:29-<br>12:49) |
|----------|----------------------------|------------------------------------------|----------------------------|-------------------------------------------------|
|          | No. of Sat                 | Fixed/ Not Fixed                         | No. of Sat                 | Fixed/ Not Fixed                                |
| 1        | 9                          | Not Fixed                                | 10                         | Fixed                                           |
| 2        | 7                          | Fixed                                    | 22                         | Fixed                                           |
| 3        | 8                          | Fixed                                    | 14                         | Fixed                                           |
| 4        | 11                         | Fixed                                    | 15                         | Fixed                                           |
| 5        | 11                         | Not Fixed                                | 17                         | Fixed                                           |
| 6        | 10                         | Not Fixed                                | 21                         | Fixed                                           |
| 7        | 12                         | Fixed                                    | 21                         | Fixed                                           |
| 8        | 10                         | Fixed                                    | 15                         | Fixed                                           |
| 9        | 12                         | Fixed                                    | 15                         | Fixed                                           |
| 10       | 11                         | Fixed                                    | 15                         | Fixed                                           |
| 11       | 11                         | Not Fixed                                | 14                         | Fixed                                           |
| 12       | 9                          | Not Fixed                                | 16                         | Fixed                                           |
| 13       | 5                          | Not Fixed                                | 14                         | Fixed                                           |
| 14       | 10                         | Not Fixed                                | 16                         | Fixed                                           |
| 15       | 8                          | Not Fixed                                | 18                         | Fixed                                           |
| 10       | 8                          | Not Fixed                                | 16                         | Fixed                                           |
| 17       | 8                          | Fixed                                    | 20                         | Fixed                                           |
| 18       | 9                          | Fixed                                    | 16                         | Fixed                                           |
| 19       | 9                          | Not Fixed                                | 19                         | Fixed                                           |
| 20       | 8                          | Fixed                                    | 13                         | Fixed                                           |
| 21       | 9                          | Not Fixed                                | 14                         | Fixed                                           |
| 22       | 10                         | Not Fixed                                | 10                         | Fixed                                           |
| 23       | 10                         | Not Fixed                                | 15                         | Fixed                                           |
| 24       | 10                         | Not Fixed                                | 13                         | Fixed                                           |
| 25       | 13                         | Fixed                                    | 16                         | Fixed                                           |
| 26       | 8                          | Fixed                                    | 15                         | Fixed                                           |
| 27       | 8                          | Not Fixed                                | 13                         | Fixed                                           |
| 28       | 10                         | Not Fixed                                | 18                         | Fixed                                           |
| 29       | 7                          | Fixed                                    | 13                         | Fixed                                           |
| 30       | 9                          | Fixed                                    | 13                         | Fixed                                           |

#### RESULTS New Survey



Figure 5. Site 4 for RTK-GNSS for New Survey Experiment

Table 9. Mean horizontal position, minimum no. of satellites and maximum PDOP of the four simulated corners

| PT. ID | mean<br>Horizontal<br>Precision<br>(m) | mean<br>minimum<br>no. of<br>satellites | mean<br>Maximum<br>PDOP |
|--------|----------------------------------------|-----------------------------------------|-------------------------|
| 1      | 0.015                                  | 11                                      | 1.993                   |
| 2      | 0.011                                  | 11                                      | 1.696                   |
| 3      | 0.016                                  | 13                                      | 1.696                   |
| 4      | 0.008                                  | 13                                      | 1.702                   |

#### RESULTS New Survey

| Corners | Mean N      | Mean E      | σΝ     | σΕ     |
|---------|-------------|-------------|--------|--------|
| 1       | 1620860.305 | 506293.775  | +0.2cm | +0.5cm |
| 2       | 1620795.197 | 506298.7978 | +0.3cm | +0.3cm |
| 3       | 1620794.047 | 506238.6972 | +0.2cm | +0.3cm |
| 4       | 1620861.588 | 506236.8578 | +0.2cm | +0.4cm |

#### Table 10. Mean positions (in meters) of the four (4) corners of the lot

#### Table 11. Grid azimuths and grid distances versus geodetic azimuths and geodetic distances

| LINE          | Gri<br>deriv | Grid Azimuth<br>derived from RTK<br>GNSS |       | Grid Distance<br>from RTK<br>GNSS (m) | Geod | letic Az<br>ved from<br>GNSS | imuth<br>n RTK | Geodetic<br>Distance from<br>RTK GNSS (m) |
|---------------|--------------|------------------------------------------|-------|---------------------------------------|------|------------------------------|----------------|-------------------------------------------|
|               | dd           | mm                                       | 55    |                                       | dd   | mm                           | SS             |                                           |
| MMA39-MMA39B2 | 89           | 45                                       | 0.69  | 49.991                                | 89   | 45                           | 53.42          | 50.003                                    |
| MMA39-1       | 195          | 23                                       | 49.78 | 32.760                                | 195  | 24                           | 43             | 32.761                                    |
| MMA39-2       | 337          | 44                                       | 30.03 | 36.223                                | 337  | 45                           | 22.86          | 36.225                                    |
| MMA39-3       | 53           | 13                                       | 4.81  | 57.908                                | 53   | 13                           | 57             | 57.911                                    |
| MMA39-4       | 124          | 16                                       | 43.18 | 58.355                                | 124  | 17                           | 37.09          | 58.358                                    |

## RESULTS New Survey

#### Table 13. Output technical descriptions from RTK-GNSS and Total Station Surveys

| TECHNICAL DESCRIPTION |                  |              |  |  |  |  |  |  |
|-----------------------|------------------|--------------|--|--|--|--|--|--|
|                       | FROM GRID        |              |  |  |  |  |  |  |
| LINE                  | BEARING          | DISTANCE (m) |  |  |  |  |  |  |
| 1-2                   | S 04-24-40.932 E | 65.302       |  |  |  |  |  |  |
| 2-3                   | S 88-54-15.063 W | 60.112       |  |  |  |  |  |  |
| 3-4                   | N 1-33-36.042 W  | 67.565       |  |  |  |  |  |  |
| 4-1                   | S 88-42-32.715 E | 56.932       |  |  |  |  |  |  |
| AREA                  | 3880.3337        | sqm          |  |  |  |  |  |  |
|                       | FROM GEODETIC    |              |  |  |  |  |  |  |
| 1-2                   | S 4-23-48.209 E  | 65.304       |  |  |  |  |  |  |
| 2-3                   | S 88-55-06.989 W | 60.114       |  |  |  |  |  |  |
| 3-4                   | N 1-32-43.424 W  | 67.569       |  |  |  |  |  |  |
| 4-1                   | S 88-41-37.191 E | 56.934       |  |  |  |  |  |  |
| AREA                  | 3880.702         | sqm          |  |  |  |  |  |  |
|                       | FROM TOTAL STATI | ON           |  |  |  |  |  |  |
| LINE                  | BEARING          | DISTANCE (m) |  |  |  |  |  |  |
| 1-2                   | S 4-23-11.433 E  | 65.301       |  |  |  |  |  |  |
| 2-3                   | S 88-56-05.346 W | 60.105       |  |  |  |  |  |  |
| 3-4                   | N 1-32-04.349 W  | 67.550       |  |  |  |  |  |  |
| 4-1                   | S 88-41-33.285 E | 56.924       |  |  |  |  |  |  |
| AREA                  | 3879.373         | sqm          |  |  |  |  |  |  |

| TECHNICAL DESCRIPTION |           |              |  |  |  |  |  |  |
|-----------------------|-----------|--------------|--|--|--|--|--|--|
| FROM GRID             |           |              |  |  |  |  |  |  |
| LINE                  | BEARING   | DISTANCE (m) |  |  |  |  |  |  |
| 1-2                   | S 04-25 E | 65.30        |  |  |  |  |  |  |
| 2-3                   | S 88-54 W | 60.11        |  |  |  |  |  |  |
| 3-4                   | N 1-34 W  | 67.57        |  |  |  |  |  |  |
| 4-1                   | S 88-43 E | 56.93        |  |  |  |  |  |  |
| AREA                  | 3880 sqm  |              |  |  |  |  |  |  |
| FROM GEODETIC         |           |              |  |  |  |  |  |  |
| 1-2                   | S 4-24 E  | 65.30        |  |  |  |  |  |  |
| 2-3                   | S 88-55 W | 60.11        |  |  |  |  |  |  |
| 3-4                   | N 1-33 W  | 67.57        |  |  |  |  |  |  |
| 4-1                   | S 88-42 E | 56.93        |  |  |  |  |  |  |
| AREA                  | 3881      | sqm          |  |  |  |  |  |  |
| FROM TOTAL STATION    |           |              |  |  |  |  |  |  |
| LINE                  | BEARING   | DISTANCE (m) |  |  |  |  |  |  |
| 1-2                   | S 4-23 E  | 65.30        |  |  |  |  |  |  |
| 2-3                   | S 88-56 W | 60.11        |  |  |  |  |  |  |
| 3-4                   | N 1-32 W  | 67.55        |  |  |  |  |  |  |
| 4-1                   | S 88-42 E | 56.92        |  |  |  |  |  |  |
| AREA                  | 3879      | sqm          |  |  |  |  |  |  |

## RESULTS Old Survey



Figure 6. Survey plan with technical description of Site 5 used for RTK-GNSS for Old Survey Experiment

#### RESULTS Old Survey

#### Table 14: Comparison between Theoretical Coordinates and RTK-GNSS Results (in meters)

| Lot no./<br>Corner<br>no. | THEORETICAL COORDINATES |            | RTK-GNSS RECOMPUTED COORDINATES |            | ΔN     | ΔE     | Displacement |
|---------------------------|-------------------------|------------|---------------------------------|------------|--------|--------|--------------|
| LOT 1                     | NORTHINGS               | EASTINGS   | NORTHINGS                       | EASTINGS   |        |        |              |
| 1                         | 1641268.701             | 487923.976 | 1641268.729                     | 487924.053 | -0.028 | -0.077 | 0.08         |
| 2                         | 1641269.521             | 487917.696 | 1641269.540                     | 487917.764 | -0.019 | -0.068 | 0.07         |
| 3                         | 1641283.741             | 487920.986 | 1641283.664                     | 487920.972 | 0.077  | 0.013  | 0.08         |
| 4                         | 1641284.991             | 487922.826 | 1641284.899                     | 487922.785 | 0.092  | 0.041  | 0.10         |
| 5                         | 1641284.441             | 487926.786 | 1641284.441                     | 487926.786 | 0.000  | 0.000  | 0.00         |
| 6                         | 1641284.201             | 487927.556 | 1641284.190                     | 487927.517 | 0.011  | 0.038  | 0.04         |
| LOT 2                     |                         |            |                                 |            |        |        |              |
| 1                         | 1641268.701             | 487923.976 | 1641268.729                     | 487924.053 | -0.028 | -0.077 | 0.08         |
| 2                         | 1641284.201             | 487927.556 | 1641284.190                     | 487927.517 | 0.011  | 0.038  | 0.04         |
| 3                         | 1641280.901             | 487938.126 | 1641280.907                     | 487938.078 | -0.006 | 0.048  | 0.05         |
| 4                         | 1641267.261             | 487934.966 | 1641267.281                     | 487934.988 | -0.020 | -0.022 | 0.03         |

#### **RESULTS** Combined RTK-GNSS & Total Station Methodology



Figure 7. Combined RTK-GNSS-Total Station Methodology

## **RESULTS** Combined RTK-GNSS & Total Station Methodology **Control Survey**

- 1. Rapid-Static GNSS Survey can be used in establishing controls for the survey.
- connect to old Bureau of Lands, NAMRIA or new DENR-LMS depending on the situation
- Established a pair for electronic total station use.
- Baseline length can be short but at least 50 meters is suggested.

## **RESULTS** Combined RTK-GNSS & Total Station Methodology

## **Isolated Survey Implementation**

- 1. RTK-GNSS Survey can be used based on the conditions set by DENR-LMB Memorandum Circular No. 2015-001.
- In addition surveyor can also consider the following conditions:

   (a) receiver clearance of 15° from the horizon can be waived if
   GNSS receiver can provide positional error not more than five (5)
   centimeters under satellite-signal obstructions such as tree
   canopies

(b) rover receivers held is applicable if the circular bubble is balanced by the instrument man

(c) positional precision better than five (5) centimeters can be used as guide to a good **observation** if RMS is not provided <sup>33</sup>

## RESULTS Combined RTK-GNSS & Total Station Methodology

## **Isolated Survey Implementation**

- (d) observation time can be lessened to five (5) 1-second observations depending on the precision shown on the GNSS controller
- (e) minimum of 10 satellites are needed to have a good RTK-GNSS Survey results,
- (f) PDOP should be better than 2.

3. If these conditions are met, RTK-GNSS can be used for a specific property survey task. If not, the traditional method of using an electronic station should be used.

Grid azimuths and grid distances must be converted to geodetic azimuths and geodetic distances for total station use (especially for long sights) 46th ANNUAL REGIONAL CONVENTION 34

- RTK-GNSS was shown to be applicable in determining the positions of parcel corners without significant difference compared to traditional method (use of optical instrument)
- Suggested methodologies provided may be used by survey practitioners in conducting property surveys using RTK-GNSS stand-alone or RTK-GNSS combined with an electronic total station.
- However, limitations exist such as obstruction, accuracy within centimeter level and systematic error from projection
- RTK-GNSS like the traditional method is also affected by land survey conditions such as varying coordinate system and poor or wrong identification of common point.

- Due to obstructions which cannot be avoided especially in urban areas, a combined RTK-GNSS-total station survey is the preferred technique.
- Since the main output of RTK-GNSS survey is in terms of grid position there maybe a need to change the requirements for survey plan approval since traverse and lot data computations using side-shot data are not applicable.

- It is recommended that part of the submittal information include base-point used, horizontal precision obtained during the survey and PDOP.
- Solutions on getting the geodetic azimuth and distance may also be included since survey plans are currently in terms of directions and distances.
- Requirement to provide only grid positions can also be recommended.

- Problems pertaining to the three (3) existing coordinate reference systems in the current cadastral database and the possible difference between the technical description of an old survey and the result of RTK-GNSS on lot parcels were not covered by the experiments.
- Surveyors must be aware of these issues when doing surveys to be able to adjust to the situation and provide a sensible solution to a particular property survey problem.



# Component 1 Property Survey using RTK-GNSS ProperRTK

## Proper RTK Rationale and Objectives

#### Rationale

- As more survey practitioners are aware on the advantages of using RTK-GNSS, an implementing rules and regulations (IRR) is needed to provide a proper way to use of the technology and verify of the results.
- The IRR should contain not just the standard processes and methodologies in using RTK-GNSS, but also a way to verify the survey outputs.
- The processes and standards described in the IRR should have a proper basis and tested if applicable.

#### • Objectives

- To come-up with various methodologies and techniques in evaluating the performance of each GNSS-RTK model that can be used by surveyors for property survey;
- To implement the tests and experiments;
- To provide an IVAS process from survey outputs obtained from RTK-GNSS; and
- To come-up with an IRR on the use of RTK for property survey using research method.

# ProperRTK Expected Outputs

- Documentation of the different RTK-GNSS brands and models available in the current market;
- Documentation on the specifications of the different RTK-GNSS brands and models;
- Technical Report describing the implemented test methodologies, statistical analysis and proposals for IVAS; and
- Draft Implementing Rules and Regulations (IRR).

# **Equipment Testing**

• MJAS Zenith Trading Model: CHCNAV i90 Date / Time: December 18, 2019 / 9:30 am - 5:50 pm • QuantumLab Geosolutions Inc. (RASA Surveying & Realty) Model: TITAN TR7 Date / Time: November 22, 2019 / 9:40 am - 4:50 pm





 CERTEZA Infosys Corporation Model: Leica GS18T Date / Time: December 9, 2019 / 9:50 am - 6:15 pm



• GEOLINK Positioning Instruments Model: SOKKIA GRX3 Date / Time: November 27, 2019 / 9:35 am - 5:10 pm





• BRIANNA Innvations & Solutions Corporation Model: Horizon Kronos C3 Date / Time: December 6, 2019 / 9:55 am – 5:30 pm



#### Thank you for your attention!!!



Try not to become a person of success, but rather try to become a person of value - Albert Einstein